

DIPENTAERYTHRIT

Dipentaerythrit wird im technischen Maßstab durch eine Reaktion von Acetaldehyd mit einem Überschuss an Formaldehyd in Gegenwart von Natriumhydroxid hergestellt. Der grundlegende Reaktionsweg entspricht damit dem bei der Herstellung von Pentaerythrit, unterscheidet sich jedoch hinsichtlich der eingesetzten stöchiometrischen Verhältnisse.

ANWENDUNG

Dipentaerythrit wird häufig in Farben und Beschichtungen verwendet, findet sich aber auch in Materialien wie Kunststoffen, Kosmetika und Waschmitteln.

Die industrielle Anwendung von Dipentaerythrit ist hauptsächlich bei der Herstellung von synthetischen Schmierstoffen, PVC-Stabilisatoren, Alkydharzen und Brandschutzbeschichtungen.

TECHNISCHES DIPENTAERYTHRIT

Spezifikation:

Chemische und physische Parameter	Werte		
Chemische und physische Parameter			
	Qualitätsstufe A	Qualitätsstufe B	Qualitätsstufe C
Massenanteil von Dipentaerythrit in %, mind.	93,0	90,0	80,0
Schmelzpunkt in °C, mind.	205	205	205
Massenanteil von Wasser und flüchtigen Bestandteilen in %, max.	O,1	0,2	0,6
Massenanteil von Asche in %, max.	0,05	0,05	0,05
Gardner-Farbzahl, max.	3	3	Keine Angabe
Massenanteil von Hydroxygruppen in %	37-41	37-41	37-41

CAS N: 126-58-9; EC N: 204-794-1 Chemische Formel: C10H22O7

Aussehen: Weißes, kristallines Pulver

Anwendung: Herstellung von synthetischen

Schmierstoffen, Stabilisatoren

Verpackung: Säcke 25 kg, Großsäcke 500-1000 kg

Haltbarkeit: 24 Monate